
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Hoang Long N g u y e n

Study programme: Open Informatics

Specialisation: Computer and Information Science

Title of Bachelor Project: Named Entity Recognition Using Recurrent Neural Networks

Guidelines:

1. Research current state of the art methods for Named Entity Recognition in Czech and
 English.
2. Propose a suitable recurrent neural network architecture based on the previous research.
3. Implement the neural network in Tensorflow for sequence labelling.
4. Perform experiments on several datasets in both languages and measure results.
5. Discuss your results and compare them with state of the art.

Bibliography/Sources:
[1] CHIU, Jason PC; NICHOLS, Eric. Named entity recognition with bidirectional lstm-cnns.
 arXiv preprint arXiv:1511.08308, 2015.
[2] STRAKOVÁ, Jana; STRAKA, Milan; HAJIČ, Jan. Neural Networks for Featureless Named
 Entity Recognition in Czech. In: International Conference on Text, Speech, and Dialogue.
 Springer International Publishing, p. 173-181, 2016.

Bachelor Project Supervisor: Ing. Jan Pichl

Valid until: the end of the summer semester of academic year 2017/2018

 L.S.

prof. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 13, 2017

2

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Bachelor’s Thesis

Named Entity Recognition Using Recurrent Neural Networks

Long Hoang Nguyen

Supervisor: Ing. Jan Pichl

Study Programme: Open Informatics

Field of Study: Computer and Information Science

May 25, 2017

iv

v

Aknowledgements
I would like to thank my great mentor Ing. Jan Pichl for never giving up on me, Bc. Jakub
Hajič for always questioning my knowledge and Gareth Dwyer, BA (Hons), for his great
support. Finally, I want to thank the whole team at eClub Prague lead by Ing. Jan Šedivý,
CSc. for their inspiring work every single day.

vi

vii

Author statement for undergraduate thesis
I declare that the presented work was developed independently and that I have listed all
sources of information used within it in accordance with the methodical instruction for
observing the ethical principles in the preparation of university theses.

In Prague, on May 24, 2017 .

viii

Abstract

Named entity recognition is a subtask in information retrieval, where we look for entities and
objects that can be denoted by a proper name, such as persons, organizations or locations.
The results are often used in a pipeline, such as question answering or entity linking.

The aim of this work is to research and implement a named entity recognition system on
the Czech Named Entity Corpus (CNEC 2.0) and CoNLL2003 dataset. We will do several
experiments using standard algorithms for sequence labelling (Conditional Random Fields)
with linguistic features extracted from literature and several neural network architectures
which operate on raw data.

Abstrakt

Rozpoznávání pojmenovaných entit je podúloha ve vyhledávání strukturovaných informací.
Jedná se o klasifikaci slov ve větě, které reprezentují entity s vlastním jménem, jako na
příklad osoby, organizace nebo lokace. Rozpoznávání entit se často využívá v automatickém
odpovídání na otázky.

Cílem této práce je rešerše a implementace systému pro rozpoznávání pojmenovaných en-
tit na českém (Czech Named Entity Corpus 2.0) a následně anglickém (ConLL2003) datasetu.
Bude provedeno několik experimentů s běžnými algoritmy na klasifikaci sekvencí (Condi-
tional Random Fields), které vyžadují ruční tvorbu příznaků, a umělými neuronovými sítěmi,
které se reprezentaci dat učí samy.

ix

x

Contents

1 Introduction 1

2 Related work 3

3 Problem specification 5
3.1 Description of the task . 5
3.2 Evaluation metrics . 5
3.3 Datasets . 6

3.3.1 CoNLL-2003 . 6
3.3.2 CNEC 2.0 . 6

4 Algorithms 9
4.1 Introduction . 9
4.2 Linear-chain Conditional Random Fields . 9

4.2.1 Definition . 9
4.2.2 Discriminative versus generative learning 10
4.2.3 Training . 10
4.2.4 Inference . 11
4.2.5 Feature functions . 11
4.2.6 Feature Selection . 12

4.3 Neural Networks . 13
4.3.1 Definition . 13
4.3.2 Activation functions . 13
4.3.3 Training . 15

4.3.3.1 Backpropagation . 15
4.3.3.2 Optimizers . 16

4.3.4 Challenges . 16
4.3.4.1 Hyperparameters . 16
4.3.4.2 Vanishing and Exploding Gradients 17
4.3.4.3 Local minima . 17
4.3.4.4 Overfitting . 17

4.3.5 Modelling power . 17
4.3.6 Features . 18

4.3.6.1 Word2Vec . 18
4.3.7 Recurrent Neural Networks . 19

xi

xii CONTENTS

4.3.7.1 LSTM . 19

5 Implementation 21
5.1 External Annotators . 21
5.2 Feature Extractor . 21
5.3 CRF . 22
5.4 Neural Networks . 22

6 Experiments 25
6.1 CRF . 25

6.1.1 Baseline Approach . 25
6.1.2 Morphological features . 26
6.1.3 POS tags . 26
6.1.4 Brown clusters, gazetteers . 26

6.2 RNN . 27
6.2.1 Baseline Approach . 27
6.2.2 Two bidirectional LSTM layers . 27
6.2.3 GRU + batch normalization . 27
6.2.4 Pretrained word embeddings . 28
6.2.5 Adding POS tags . 28
6.2.6 Concatenating additional features . 28
6.2.7 Word convolution . 29
6.2.8 Character level features . 29

6.2.8.1 Character convolution . 29
6.2.8.2 Character-level word encoding 30

6.3 CoNLL2003 . 30
6.4 Results comparison . 31

7 Conclusion 33

Bibliography 35

A List of abbreviations 39

B Installation 41

C Contents of CD 43

List of Figures

3.1 A description of the NE tags in the CNEC2.0 dataset taken from [35]. Note
the third column is for spacing reasons. 7

4.1 A single neuron . 13
4.2 A feedforward neural network with 2 hidden layers and 2 outputs. 14
4.3 A recurrent cell at time point t takes the input xt and outputs ht 19
4.4 Unrolling the recurrent cell makes it easier to see the transitions between

states h0 and ht . 19
4.5 A scheme of a LSTM cell taken from [14] . 20

xiii

xiv LIST OF FIGURES

List of Tables

3.1 This table contains the container tags in the CNEC2.0 dataset 8
3.2 A table containing non-entity special tags with the explanation and an example 8

6.1 CRF with the current and neighbouring word tokens 26
6.2 CRF with the current and neighbouring word tokens and morphological features 26
6.3 CRF with the current and neighbouring word tokens and morphological fea-

tures and POS tags . 26
6.4 CRF with the current and neighbouring word token, morphological features,

POS tags, Brown clusters and gazetteers . 27
6.5 1 bidirectional layer and untrained embeddings 27
6.6 2 bidirectional LSTM layers and untrained embeddings 27
6.7 1 bidirectional GRU layer, batch normalization and untrained embeddings . . 28
6.8 1 bidirectional GRU layer, batch normalization and pretrained embeddings . . 28
6.9 1 bidirectional GRU layer, batch normalization and pretrained embeddings,

along with concatenated POS tags . 28
6.10 1 bidirectional GRU layer, batch normalization and pretrained embeddings,

along with concatenated POS tags and boolean features 29
6.11 1 bidirectional GRU layer, batch normalization and pretrained embeddings,

concatenated POS tags and boolean features, word convolution 29
6.12 1 bidirectional GRU layer, batch normalization and pretrained embeddings,

concatenated POS tags and boolean features, character convolution 30
6.13 1 bidirectional GRU layer, batch normalization and pretrained embeddings,

concatenated POS tags and boolean features, character encodings 30
6.14 CoNLL2003 task comparison . 31
6.15 Comparison of F1 scores on types of all our models. 31

xv

xvi LIST OF TABLES

Chapter 1

Introduction

Named entity recognition (NER) is commonly used in information retrieval tasks such as
question answering, where we want to detect entities that contribute to the question. The
detected entity is afterwards linked to a concept in a knowledge base (a task commonly
referred to as entity linking). Alternatively, the class of the entity itself is used as a fea-
ture for question classification. With the increase of chatbots, personal assistants and AI
conversation agents, the need for good natural language processing (NLP) and natural lan-
guage understanding (NLU) systems increases. Unlike part-of-speech (POS) tagging, NER
is a more difficult task due to the ambiguity of words. For instance, apple might mean the
computer company or the fruit, depending on the sentence. New York is a named entity
while a new car is not. Most systems solve this by considering the context of the word as
well.

In this work, we will first review the datasets and current NER methods. Afterwards,
we will propose several neural network architectures and discuss their advantages and dis-
advantages. Finally, in the practical part, we will perform several experiments and compare
the results.

Systems with expertly picked linguistic features tend to have good performance. The
approach of neural networks is different, as it tries to learn a good representation from raw
data instead. This had great success in computer vision with convolutional neural networks,
due to the way pictures are structured. For natural language processing (NLP), different
approaches were required. One of those is the recurrent neural network (RNN), which keeps
an inner state, allowing it to keep long term memory and remember relevant parts of the
sentence.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Related work

Many machine learning approaches have been implemented for NER. Both generative and
discriminative models have been applied. Some ignored the sequential structure of the task,
some tried to use it for their benefit.

For CNEC, the first algorithm was a decision tree [36] in 2007 which used boolean,
contextual and categorical features. Contextual features were represented by the presence
or absence of certain trigger words that were semimanually extracted from the training
data. The approach was to detect one-word named entities and two-word named entities
separately. For longer entities, special hand-crafted algorithms were used. They covered
only street names as a special case.

There is also a recognizer based on Support Vector Machines (SVM) published in 2009,
also known as maximum margin classifier. They also created three separate classifiers for
one-word, two-word and three-word named entities, omitting any longer ones. For SVMs,
the bag of words approach was omitted to keep the dimensionality low. They used part-
of-speech tags, boolean features, gazetteers and the context around the given token. The
resulting feature space dimension was 200.

Another approach was using a maximum entropy classifier by [22]. Maximum entropy
is equivalent to logistic regression [27]. For features, they used a very similar set of feature
functions like for our CRF system, with bag of words and categorical features. In 2013, a
two-stage maximum entropy classifier with Viterbi decoding was released [38]. The novel
approach was using dynamic, two-stage decoding of the probabilities instead of the argmax
in the sequence. The current state-of-art was published near the end of 2016 and uses a
RNN with added character level features [39].

For ConLL2003, the algorithms include adaptive boosting (AdaBoost) [6] which uses a
linear combination of weak classifiers, in this case fixed depth decision trees. Other ap-
proaches include a character based Hidden Markov Model [21], a LSTM neural network [12]
and ensemble approaches that combined several classifiers together [10] [47].

3

4 CHAPTER 2. RELATED WORK

Chapter 3

Problem specification

In this chapter, we will describe the task along with its evaluation metrics. Afterwards, we
will describe in detail both datasets.

3.1 Description of the task

Named entity recognition is at its core a sequence labelling task, where we take a sentence and
annotate each word using tags. It contains several subtasks, such as tokenizing or chunking,
but we will disregard those for the purpose of the experiment and consider the text to be
already split into tokens. General NER systems extract several linguistic features, such as
word case, suffixes, prefixes, parts-of-speech tags or dependency parse trees. Afterwards,
they employ a statistical model to predict a tag for the word.

3.2 Evaluation metrics

There are many ways to measure the performance of a NER system. The easiest one is to
simply count the number of correct tags and divide it by the total number of tags. We call
this accuracy. There are also more sophisticated methods to deal with multi-word entities.
Those only count it as correct when the whole entity has been matched. For that purpose,
the classes are extended with B(egin), I(nside) and O(outside) tags. We call this the BIO
scheme. Some systems go even further and add L(ast) and U(nit), creating the BILOU
scheme. The article [38] uses a modified BILOU scheme. Finally, we introduce the terms
precision, recall and F1 score.

Precision Precision is the number of correctly predicted entities divided by the number
of all predicted entities.

Recall Recall is the number of correctly predicted entities divided by the number of entities
located in the data.

5

6 CHAPTER 3. PROBLEM SPECIFICATION

F1 F1 is the harmonic mean of precision and recall.

F1 = 2 · precision · recall
precision+ recall

(3.1)

3.3 Datasets

3.3.1 CoNLL-2003

The CoNLL-2003 dataset concerns language-independent named entity recognition. The
dataset contains English and German newspaper articles annotated by people from the
University of Antwerp. The English dataset is created from the Reuters Corpus. The
annotations were publicly available, but the raw data was not. The articles had to be
requested from the National Institute of Orders and Technology. The CoNLL-2003 dataset
considers 4 types of entities: Person, Organization, Location and Misc. This, together with
the BIO scheme, leads to 9 different classes: P-B, P-I, O-B, O-I, L-B, L-I, M-B, M-I, O. In
this case, P-B would signify Person-Begin, O-B Organization-Begin, etc. The lone O is the
Outside tag. The data includes POS tags.

3.3.2 CNEC 2.0

The Czech Named Entity Corpus is a dataset annotated by the Institute of Formal and
Applied Linguistics at the Charles University in Prague. It consists of 8993 sentences and
has 46 different tags in a two-level scheme. The upper level contains 8 supertypes and the
lower has 46 different types. This allows us to use different granularities for evaluation. 46
types with the BIO scheme leads to 93 different classes spread between 35,220 entities, which
makes the task notably harder. Some entities are mentioned very rarely and others are only
in multiword named entities. Named entities in CNEC can be nested in each other. For
example, <gu Ustí nad <gh Labem>> contains two entities.

There are also special tags defined in [36] called containers, which encapsulate multiword
named entities. They are written in uppercase letters. For instance <P <pf Gordon <ps
Summer>> would signify a Person with a given name and surname.

Finally, there are special tags that do not signify entities but rather attributes such as
<f> for foreign word, <s> for abbreviation, <cap> for capitalized words.

3.3. DATASETS 7

Types of NE

a - Numbers in addresses

g - Geographical names

i - Institutions

m - Media names

n - Number expressions

o - Artifact names

p - Personal names

t - Time expressions

ah - street numbers
at - phone/fax numbers

az - zip codes
gc - states

gh - hydronyms
gl - nature areas / objects

gq - urban parts
gr - territorial names

gs - streets, squares
gt - continents

gu - cities/towns
g_ - underspecified

ia - conferences/contests
ic - cult./educ./scient. inst.

if - companies, concerns...
io - government/political inst.

i_ - underspecified
me - email address

mi - internet links
mn - periodical

ms - radio and TV stations
na - age

nb - vol./page/chap./sec./fig. numbers
nc - cardinal numbers

ni - itemizer
no - ordinal numbers

ns - sport score
n_ - underspecified

oa - cultural artifacts (books, movies)
oe - measure units

om - currency units
op - products

or - directives, norms
o_ - underspecified

pc - inhabitant names
pd - (academic) titles

pf - first names
pm - second names

pp - relig./myth persons
ps - surnames

p_ - underspecified td - days

tf - feasts th - hours

tm - months ty - years

Figure 3.1: A description of the NE tags in the CNEC2.0 dataset taken from [35]. Note the
third column is for spacing reasons.

8 CHAPTER 3. PROBLEM SPECIFICATION

Table 3.1: This table contains the container tags in the CNEC2.0 dataset
Container Meaning Example

A address

<A< KOMO>, < gs Knížecí> <ah 12/173>,
<az 709 00> <gu Ostrava-Nová Ves>,
tel.: <at 069 6621773>, <at 6621375>,
<at 601527588>, fax: <at 069 6621773>>

C bibliographical
information

<C<P<pf G.> <ps Lukács>>:
<oa<f< Die Theorie des Romans>>,
<gu Berlin>, <ic<f Verlag <P< pf Paul>
<ps Cassier>>>> <ty 1920>>

P person name <P< pd Doc.> <pd MUDr.> <pf Přemysl>
<ps Doberský>, <pd DrSc.>>

T time value <T< td 21.> <tm června> <ty 2003> <th 20.00>>

Table 3.2: A table containing non-entity special tags with the explanation and an example
Tag Meaning Example
s An abbreviation <io<s ODS>>
f A foreign language word <if<f Deutsche Bank>>

segm A word which was capitalised
due to a segmentation error

Revoluční zvrat v pohledu na
život <segm Základem> života není....

cap A word written in all caps A jak <cap TO> vysvětlíte?

lower A word which was wrongly
capitalized

ekonomicky ovládnout <lower Střední>
<gt Evropu>

upper A word which was wrongly
written in lower case

dalšim zajímavým
<upper britem> je...

?
A unspecified entity which
doesn’t belong to any of the
previously mentioned categories

<? Asmara> se odmítá
stáhnout z území...

! The whole sentence is unannotated <!> 70: 15 Písní na S. Georga, op.

Chapter 4

Algorithms

4.1 Introduction

In this section, we will mention several commonly used algorithms for sequence labelling. All
of them model the conditional probability of a label given the context P (yn|xn, xn−1, ..., x1).
The first ones, Hidden Markov Models (HMM), are generative models that assign a joint
probability to paired observations and label sequences [23]. A generative model must usually
enumerate all possible observation sequences, which makes inference intractable. HMMs
apply the Markov Assumption, which states that the probability distribution of future states
only depends on the present one and not on the previous ones. This makes training and
inference easier, but does not allow us to model long-range relations between words. HMMs
were used to align biological sequences or in POS tagging. They were followed by Conditional
Random Fields [23] (CRF). CRFs are undirected discriminative graphical models. They
model the conditional probability instead of the joint probability. For sequence labelling, a
subset called linear chain CRFs is used. They use a directed linear structure, leading to both
simpler training using maximum likelihood and easier inference using dynamic programming.
CRFs allow us to easily employ a variety of both global and local features. This can lead
to computational issues (considering both memory consumption and compute time), so we
dedicated section 4.2.6 for feature selection and pruning. Finally, we will describe both
general neural network architectures and ones containing internal memory for structured
classification of sequences (i.e. recurrent neural networks). We will briefly discuss training
and common issues.

4.2 Linear-chain Conditional Random Fields

4.2.1 Definition

Definition 4.2.1. [43] Let Y,X be random vectors, w ∈ Rk be a weight vector and F =
fk(y, y

′,x)Kk=1 be a set of real-valued feature functions. Then a linear-chain conditional
random field is a distribution p(y|x) that takes the form:

p(y|x) = 1

Z(x)

T∏
t=1

exp(

K∑
k=1

wkfk(yt, yt−1,xt)) (4.1)

9

10 CHAPTER 4. ALGORITHMS

where T is the number of timesteps and K is the number of feature functions. Z(x) is an
input-dependent normalization function to turn it into a probability,

Z(x) =
∑
y

T∏
t=1

exp(

K∑
k=1

wkfk(yt, yt−1,xt)) (4.2)

The feature functions can take both numeric and boolean forms, but as we only train the
weights, they are most commonly set to 1 if they are true and 0 otherwise. There is a large
variety of possible feature functions which we will discuss in 4.2.5.

In the case of sequence labelling, X would be the input and Y would be the output NE
tags.

4.2.2 Discriminative versus generative learning

CRFs can be seen from two separate viewpoints. The first one is as an extension of logistic
regression (a discriminative model) to sequences. The second is as a relaxation of Hidden
Markov Models (generative sequence models) to conditional probability. There is thus a 4
way relation between Naive Bayes and Logistic Regression, HHMs and CRFs [43].

4.2.3 Training

We are given independent and identically distributed data D = x(i),y(i)N
i=1 where xi =

(xi1, x
i
2, x

i
T) is a sequence of inputs and yi = (yi1, y

i
2, y

i
T) is a sequence of predictions. The

weights are trained using maximum likelihood estimation.

L(w) =
N∑
i=1

log p(y(i)|x(i)) (4.3)

We substitute this into the linear chain CRF:

L(w) =

N∑
i=1

T∑
t=1

K∏
k=1

wkfk(yt, yt−1,xt))−
N∑
i=1

logZ(x(i)) (4.4)

The weights we seek are thus:
w∗ = argmax(L(w)) (4.5)

This is an optimization task. The problem is concave [43], thus any local optimum is also
the global optimum. In machine learning tasks, it is common to introduce regularization.
Regularization is a function that penalizes complex models to avoid overfitting on the training
data. There is for example L2 regularization, where we add the squared Euclidean norm of
the weights to the minimization term. This encourages the weights to be small. Similarly,
an L1 norm takes the absolute value of the weights. This induces sparsity, i.e. many weights
are set to 0. We used L2 regularization in our CRF module, because we performed feature
selection separately. The optimization task is thus:

L(w) =
N∑
i=1

T∑
t=1

K∑
k=1

wkfk(yt, yt−1,xt))−
N∑
i=1

logZ(x(i))− λ ·
K∑
k=1

w2
k (4.6)

4.2. LINEAR-CHAIN CONDITIONAL RANDOM FIELDS 11

where λ is a hyperparameter to determine how much we should penalize large weights. To
optimize this, iterative methods are used. The simplest one being gradient descent, which
is rather slow [43]. Alternatively, one can use second order methods such as Newton’s
method for faster iteration, but the resulting Hessian is usually too large to fit into memory,
making the approach infeasible. As a compromise, Quasi-Newton methods are used. One
can approximate the Hessian using the first derivative (BFGS), or use its limited memory
version. (L-BFGS).

4.2.4 Inference

For inference, the linear-chain CRF uses algorithms which are analogous to the Viterbi algo-
rithm for Hidden Markov Models. The Viterbi algorithm [32] is a a dynamic programming
algorithm to pick the most likely sequence of hidden states in a graphical model with a linear
structure. It stores all path probabilities in a 2D matrix instead of taking the most probable
tag with every token. At each timestep, it saves the currently most probable path to each
of the output tags and calculates the next step using those values. When the algorithm gets
to the last token, it chooses the most probable path using backpointers.

4.2.5 Feature functions

There are several distinct categories of feature functions considered. We were inspired by
several research papers [44, 35, 10]

• Word tokens A feature function outputs 1 iff xi is equal to a certain word. For
the implementation, we made templates that generate the feature functions out of the
given text automatically. We encoded it as w[0]=word. This is was used as a baseline
approach.

• Neighbouring tokens We encoded neighbouring words the same way. The feature
function outputs 1 iff the previous or next token is a certain word. The encodings are
w[1]=word, w[2]=word, w[-1]=word, w[-2]=word. For the edge cases, we used special
tokens such as w[-1]=START and w[1]=END

• Conditional tokens Additionally, we encoded the previous token with the current
token like previous|current. The reasons for this is to circumvent the linear nature of
linear chain CRFs. We can’t use the output of the previous step, so we add a separate
feature activation instead.

• Word lemma A lemma is also known as the canonical or dictionary form of the word.
Since Czech is a morphologically rich language, we employed a lemmatizer to cut down
the number of words. However, morphologically relevant information might be lost
from the word so we encoded the suffixes and prefixed separately.

• Word suffix We considered word suffixes of several lengths (3,4). If the word was
shorter than the threshold, we would use the whole word instead. The reasoning was
that certain suffixes signify that the word is an adjective and could be part of a multi-
word named entity.

12 CHAPTER 4. ALGORITHMS

• Word prefix We maintain similar arguments for prefixes.

• Boolean features We also included basic boolean features signalling whether the
word is capitalized, contains a number, or an “@” sign.

• Word shape The word shape was extracted from [44]. We would substitute consec-
utive character sequences of the token with a mask: A for uppercase letters, a for
lowercase letters, N for numbers and “.” (a dot sign) for punctuation. Thus, Jakub
would turn into Aa. 7.května would become N.a, 12.4.1996 would turn into N.N.N.

• Part of Speech tags A key feature for NER systems are part-of-speech (POS) tags.
POS tagging is a process where we assign a part of speech to a token based on it’s
definition and context. POS tags include noun, verb, adjective, adverb, etc. They
allow us to generalize and infer entities from the sentence structure. We didn’t use the
commonly used Stanford CoreNLP pipeline but opted for the newly released, neural
network based SyntaxNet by Google instead. We used the local, neighbouring and
conditional tags.

• Brown Clustering Brown clustering [5] is a hiearchichal clustering of words based on
their appearance in similar context. It can be seen as a series of merges which minimize
the mutual information gain using a greedy heuristic. The result of Brown clustering is
a binary tree of words, where each word has an assigned bit-string. By cutting (taking
the substring) the clustering at different positions, we gain several numbers of clusters.
Thus 10101010111 can be cut into 10101010 or further to 101010, each would represent
a cluster of a different granularity. The greedy approach leads to the most common
words being used in each cluster instead of semantically similar words. We used the
whole string, and substrings of a range of lengths. The main motivation for Brown
clustering was to deal with out of vocabulary words. Different named entities/names
would be shown in similar contexts and would thus be part of the same clusters.

• Gazetteers Another common NER feature is the gazetteer. A gazetteer was originally
a geographical dictionary which contained additional information such as statistics or
physical features of the region. In named entity recognition, gazetteers are simply lists
of given names, countries and organizations. We extracted given names, surnames and
addresses from the Czech Ministry of Interior website. The feature is simply a boolean
signalizing whether the token is in the given gazetteer.

4.2.6 Feature Selection

The resulting number of features is in the range of one hundred thousand features. While
the model itself is roughly 40MB in size, we still wish to prune unneeded features. We
already mentioned L1 regularization which would set many weights to 0 and would enable
us to discard them. Another method used before actual training is to count the number of
instances. Afterwards, we remove feature functions that occurred less than 10 times in the
training data. For example, we would remove w[0]=rareWord.

4.3. NEURAL NETWORKS 13

4.3 Neural Networks

Neural networks and by extension deep neural networks are a powerful class of machine
learning algorithms which use a nonlinearity projection to stack linear layers on top of each
other. They are inspired by the biological brain and try to approximate its function. For
example, it has been shown that convolutional neural networks correlate to the animal visual
cortex [16].

4.3.1 Definition

The basic computing unit of a neural network is a neuron, which takes several inputs and
applies a weighted sum. A single neuron is equivalent to a perceptron.

p(i) =

|xi|∑
i=1

xiwi (4.7)

Afterwards we apply a nonlinear function σ (we will discuss those in section 4.3.2). We
call the result an activation. Neurons are grouped in layers in an acyclic graph [11]. Note
a single layer can be represented using a weight matrix W and the calculation W T · x can
be done in parallel. The acyclic graph assumption leads to a feed forward network [28] (in
certain literature known as multilayer perceptrons), where the information travels only one
way. There are modifications that allow the outgoing information to be fed back to the
neuron which are called recurrent neural networks, which we will discuss in section 4.3.7.
We can write the neural network as a series of nested functions, which will later be useful
during training:

y(i) = σ(wT
i · σ(wT

i−1 · σ(wT
i−2 · x))) (4.8)

Input #1

Input #2

Input #3

Input #4

Input #5

Output

Figure 4.1: A single neuron

4.3.2 Activation functions

One of the first activation functions was the step function, which is simply:

f(x) =

{
1, if x ≥ 0

0, otherwise
(4.9)

14 CHAPTER 4. ALGORITHMS

Input #1

Input #2

Input #3

Input #4

Output

Output

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Figure 4.2: A feedforward neural network with 2 hidden layers and 2 outputs.

The step function was used in early perceptron models, but was not continuous and thus
was not suited for gradient-based backpropagation. The most common activation function
was the logistic sigmoid, which allows an area of uncertainty.

f(x) =
1

1 + ex
(4.10)

Additionally, its derivative has the following closed form:

f ′(x) = f(x)(1− f(x)) (4.11)

There is ongoing research on activation functions and how they influence training. There are
issues in training such as the vanishing gradient problem [13], where the error gradient turns
too close to zero and does not influence the deeper layers. For example with the logistic
sigmoid function, very high values would lead to the gradient being 0. This was partly
addressed by introducing the Rectified Linear Unit (ReLU) with the following form:

f(x) =

{
x, if x ≥ 0

0, otherwise
(4.12)

For large x, the derivative is simply 1 and the error signal doesn’t vanish. It was also
mentioned in literature that ReLU often introduces sparsity [48] and improves generalization.
There are many modifications of ReLU, such as Leaky Rectified Linear Unit (LReLU) and
Exponential Linear Units (ELU) [9]. Finally, we will mention the activation function used
at the output layer, the softmax:

f(x)j =
exj

K∑
k=1

exk

for j = 1..K (4.13)

Softmax turns the output of K functions into a probability distribution and is used for
multiclass classification [11].

4.3. NEURAL NETWORKS 15

4.3.3 Training

The goal during training is to minimize a loss function. Loss functions include the mean
squared error (MSE), Kullback–Leibler divergence and categorical cross entropy [11]. As we
are doing multiclass sequential classification, we will concentrate on categorical cross entropy.
The reason it is used more than MSE is that MSE penalizes wrong results heavily due to
the way the error is calculated. Categorical cross entropy is defined as:

L(f(xi), yi) = −
C∑
j

yi log f(xi) (4.14)

There are many methods how to update the parameters of a neural network, such as evolu-
tionary algorithms or expectation maximization, but we will mainly concentrate on gradient
descent using backpropagation.

Gradient descent methods Gradient descent (ascent) is an iterative method to find a
local minimum (maximum) of a function. It computes the gradient of the function to update
the weighs.

wi+1 = wi − λi∇f(wi), i = 0, 1, ... (4.15)

Similarly to training conditional random fields, the main advantage of the gradient descent
method are the memory requirements. We only need the first derivative, which is O(n)
parameters. For very large datasets, an approximation of gradient descent named stochastic
gradient descent is employed, where we use either a randomly picked single sample or a small
batch instead of the whole dataset. The drawback is generally a slow convergence speed. We
can tune λ as a learning rate parameter and many minimizers use it to improve convergence.

We will mention second order algorithms for completion’s sake and discuss why they are
not usable in neural networks. A commonly mentioned optimization method is Newton’s
method, which is derived from the quadratic approximation of the target function using
Taylor’s series expansion.

wi+1 = wi − λiH−1∇f(wi), i = 0, 1, ... (4.16)

where H is the Hessian or the matrix of all second derivatives. and λ is the step size or
learning rate again. The advantage is faster convergence. However, the drawbacks are more
pronounced in neural networks due to the large number of parameters. Firstly, calculating
the Hessian and its inverse for each layer is computationally very expensive, making training
very slow despite faster convergence. Secondly, the Hessian has O(n2) parameters to store
which is unfeasible for large networks. Finally, the Hessian makes it impossible to distribute
the neural network among different GPUs or machines for large scale learning. Current
trends tend towards calculations which can be done locally and thus in parallel.

4.3.3.1 Backpropagation

Backpropagation is the use of the chain rule of derivatives on the composed functions to
update the weights at each layer [33]. We first do a forward pass by inputting the data

16 CHAPTER 4. ALGORITHMS

in the network and propagating it to the last layer. Afterwards we calculate the error by
comparing the output with the true labels (in our case we use categorical crossentropy).
Afterwards, we update the weights going starting with the last layer and going backwards
towards the input. The change in a given hidden layer depends on its own derivative and its
output weighted by the succeeding layer’s derivative.

4.3.3.2 Optimizers

Common improvements to gradient descent methods include tuning the learning rate. The
easiest one is exponential decay, where we gradually lower the learning rate between itera-
tions. Further algorithms such as Adaptive subgradient methods (Adagrad) try to remove
the learning rate hyperparameter completely. Alternatively, one can add another term which
would be easier to compute than the Hessian. We will mention both in the following list:

• Stochastic gradient descent with momentum adds a portion of the previous output to
the gradient. intuitively, the momentum helps the gradient to accelerate in the correct
direction.

wi+1 = wi − (γ · wi−1 + λi∇f(wi)), i = 0, 1, ... (4.17)

• Adaptive moment estimation (Adam) [20] is a method, which computes different learn-
ing rates for each parameter.

4.3.4 Challenges

4.3.4.1 Hyperparameters

Neural networks generally contain a large number of hyperparameters and decisions. From
network architecture (Number of dense layers, number of nodes in each layer, dimensions of
the features or the choice of activation functions) to learning rate and weight initialization,
each decision has an impact on the resulting generalization and training speed. Common
machine learning approaches for hyperparameter search, such as cross-validation, tend to be
infeasible for very large neural networks where training can take weeks.

One way to make a neural network more robust against fluctuations from initial parame-
ters is called batch normalization [18]. Batch normalization normalizes the input of a layer to
a normal distribution. This addresses the problem that the distributions of layer inputs of-
ten change along with the previous layers parameters during training, making learning more
difficult. Normalizing the layer input makes it less dependent on previous layer changes and
allows us to use higher learning rates. We found this to be empirically true in chapter 6 as
it lead to a great improvement in performance.

Other hyperparameters, such as the learning rate, can be automatically estimated by the
optimizers. For batch size, a common decision is to choose the largest one that fits into the
memory after setting the architecture.

Most architecture decisions come from experience, but current research concentrates on
automatically generating neural network architectures for the given task using reinforcement
learning [2].

4.3. NEURAL NETWORKS 17

4.3.4.2 Vanishing and Exploding Gradients

We have already mentioned the vanishing gradient problem in 4.3.2. An opposite problem
is the exploding gradient, where the value of the weight update approaches infinity, making
further learning impossible. This is commonly detected very early on as the value of the
loss function quickly approaches infinity as well. A simple solution to this so called gradient
clipping [30], where we normalize the gradient if its L2 norm reaches the threshold.

4.3.4.3 Local minima

Neural Network optimization is not a convex problem. A notable issue is getting stuck in a
local minimum. The naive approach is to restart the network several times. Most advanced
optimizers tend to increase the learning rate hoping that the we jump out of the gradient
valley. There is however no general guarantee of global convergence, making training rather
tricky and an ongoing problem with neural network training.

4.3.4.4 Overfitting

Neural Networks naturally tend to overfit due to their expressive power. It is easier to
remember a certain feature to be at a specific point than to learn the structure of the
problem. Overfitting is usually detected by having a validation set and looking at the
classification error and loss there. One way to prevent overfitting is early stopping. We
stop training the network when the validation error does not improve. A commonly cited
form of regularization is dropout, where we randomly turn off a portion of neurons during
training. This forces the network to be more robust and not to concentrate on a single neuron
output, which prevents overfitting. It has been said [17] that dropout can be interpreted as
averaging several models trained in an ensemble. Batch normalization is also cited as a form
of regularization [18].

4.3.5 Modelling power

The universal approximation theorem states [15] than neural network with a single layer can
approximate continuous real valued functions with arbitrary accuracy, given enough hidden
nodes. The theorem does not state how many nodes are required, only that it is a finite
number. One can imagine this as given enough hidden nodes, the neural network can learn
a simple mapping from any combination of inputs to a correct output. This is undesirable
as it is an extreme form of overfitting where the model does not generalize at all.

The true power of neural networks is representation learning. This is easy to see with
convolutional neural networks for computer vision, where each filter learns to detect a simple
shape such as a line or a circle. These filters are then the fed to the next layer which detects
more complex shapes until finally a fully connected layer does the classification. This is
considerably more difficult to visualize for text based tasks, but many approaches were
proposed and implemented. We tried two of these, word embeddings which embed words
into a continuous space and character embeddings, which go one level lower and represent
characters. We then tried to encode words out of them using a smaller recurrent neural
network or use their n-grams as features. We will discuss both approaches in 4.3.6. To

18 CHAPTER 4. ALGORITHMS

model long-term relations between words, we will introduce recurrent neural networks in
4.3.7 We will also discuss the benefits of augmenting raw data with additional, external
features.

4.3.6 Features

With conditional random fields, we created a range of indicator functions for each word and
feature and did sequence modelling using those. The easiest approach for a neural network
is one-hot encoding. Suppose we have a vocabulary of size 20000. We would encode each
word using its own vector which would have a one at a certain index and contain zeroes
otherwise. After multiplying this with a weight matrix, the one would select the correct row
and obtain the correct n-dimensional word embedding. Alternatively, we can directly feed
the word embeddings to the network.

4.3.6.1 Word2Vec

We mentioned embedding words into a continuous space but we did not elaborate how
to obtain an embedding where certain semantic relations between words are preserved. A
successful approach [26] is Word2Vec. Word2Vec is a shallow two layer neural network which
takes a large corpus of text and either tries to predict the next word from the surrounding
words (we call this continuous Bag-of-Words), or tries to predict the surrounding words from
the current one (we call this continuous skipgram). By training this neural network, we end
up with a vector representation of words in the weight matrix. Words that are contained
in similar contexts are located in closer proximity in the vector space. This correlates to
the Distributional hypothesis [34] which states that linguistic items with similar distributions
have similar meanings. Certain word embeddings can be even used in mathematical formulas.
A commonly quoted example is:

king −man+ woman = queen (4.18)

In our work, we tried untrained word embeddings (i.e. a simple one hot encoding, leaving
the network to learn the necessary relations) and pretrained continuous skipgram Word2Vec
model given by the Seznam.cz company for research purposes. We also tried to append
several additional features using one hot encoding. The features included:

• POS tags: While word embeddings retain semantic and potentially syntactic informa-
tion, we wanted to emphasize the role of the word in the current sentence instead of a
generalized average.

• Gazetteers: We added gazetteers because we assumed the neural network can’t possibly
learn that.

• Boolean features: We also tried to add several boolean features (isCapitalised, con-
tains@, isNumber) to see if the additional information could improve performance.

Finally, we added a 1D convolutional layer. The idea was to make small (4-5) word contexts
and force the network to look at the short term dependencies (disregarding locality) instead
of just the long term dependency. In simpler terms, we don’t care where the trigram “New
York City” is in the sentence, as long as the 3 words are together.

4.3. NEURAL NETWORKS 19

4.3.7 Recurrent Neural Networks

So far, we have mainly described feedforward neural networks, which take the whole input
at once. We will now introduce a modification which adds an inner state to the neuron
and allows it to be modified. After outputting the activation, the neuron also has a loop
back to itself. Due to this structure we call these Recurrent Neural Networks (RNN). This
inner memory allows us to model long-term dependencies (the output is also dependent
on the entire preceding history) in a sequence and such networks are thus suited for time
series modelling and sequence classification. We will first describe the RNN conceptually
and afterwards mention one concrete implementation. Note the weight matrix is the same

ht

xt

Figure 4.3: A recurrent cell at time point t takes the input xt and outputs ht

h0

x0

h1

x1

ht−1

xt−1

ht

xt

Figure 4.4: Unrolling the recurrent cell makes it easier to see the transitions between states
h0 and ht

between the timesteps. By looking at the unrolled network, we can see it as a very deep (up to
the length of the sequence) neural network with fixed weights. RNNs in their base form, while
being theoretically able to, tend to have great difficulties to learn long term dependencies
due to the vanishing gradient problem which is accentuated by the deep structure of the
network [3] [13]. Simply put, the error gradient between timesteps ti and tj tends to grow
too small for j � i and usually only the short-term relations are learned. This was addressed
by introducing Long Short Term Memory (LSTM) networks introduced in [14].

4.3.7.1 LSTM

While a basic RNN might contain a simple sigmoid or tanh neural network in the cell, an
LSTM contains 4 neural networks in a special structure. We call them gates. The information
can freely pass through the network and is modified by the gates if needed. Thus the cells
further down the pipeline can still learn the relations.

• The forget gate decides whether to keep the incoming information or not.

20 CHAPTER 4. ALGORITHMS

Figure 4.5: A scheme of a LSTM cell taken from [14]

• The input gate decides what values in the cell we want to update.

• The cell is the network that generates the potential values.

• The output gate decides which part of the cell state to output.

LSTM networks have been very successful in a variety of tasks such as speech recognition
[14], machine translation [42] [1], image captioning [45], question answering [46] or language
modelling [41]. We will also mention Gated Recurrent Units (GRU), a simplified form of
LSTMs that contains two gates instead of three [7], leading to a smaller number of param-
eters, which relates to faster learning rate and better performance with smaller amounts of
data. We will test that empirically in chapter 6.

Chapter 5

Implementation

In this section, we will describe our system architecture and mention the libraries we used.
Finally, we will discuss our chosen neural network architectures. We chose Python3 as the
programming language for its suite of text libraries and neural network bindings, which
allowed us to reuse code between different classifiers. We have a set of tools to read both the
conll2003 and CNEC2.0 datasets and set the granularity of NE tags. Most work was spent
on the feature extractor, which is an extensible framework that generates features usable
by both the CRF implementation and the neural networks. Finally we added a simple web
service written in the Python Flask framework.

5.1 External Annotators

We used several additional annotators. For word lemmas, we used Morphological Dictionary
and Tagger (MorphoDiTa) [40], an open source tool for morphological lemmas made by
the Institute of Formal and Applied Linguistics at Charles University. For the tagger, a
language model is needed1. We also used a word stemmer2. Finally, we used a SyntaxNet3

implementation for part-of-speech tagging. We queried the REST API using the requests
Python library and saved the POS tags in a json format afterwards for further use. For
Brown clustering, we chose a C++ implementation by Percy Liang [24] and trained it on
the Czech Wikipedia.

5.2 Feature Extractor

We instantiate our feature extractor with a list of strings representing function names. The
feature extractor contains a dictionary of feature functions internally and transforms the text
by sequentially applying each feature function and appending the result to a list. A typical
feature function starts with ft_. For example: ft_POS_current(*params) returns the POS
tag for the current word. The input parameters are the current token, its position in the

1We used czech-morfflex-pdt-161115 [37].
2http://research.variancia.com/czech_stemmer/
3https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

21

http://research.variancia.com/czech_stemmer/
https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

22 CHAPTER 5. IMPLEMENTATION

sentence starting with 0 and a reference to the whole sentence. This allows each feature
function to access neighbouring words and output features based on that. Internal functions
(REST api query, dictionary loading) are prepended with an underscore. To add a feature
function, one simply implements it in feature_extractor.py, adds it to the dictionary of
functions and adds the feature label to the model configuration file.

5.3 CRF

We used the C++ implementation CRFSuite [29] with Python bindings for the linear chain
conditional random fields. The features are fed as text strings for both training and tagging
and the CRFSuite generates its own internal implementation. As mentioned in 4.2.6, we
employed L2 regularization of the weights and additionally pruned feature functions that
did not occur more than 10 times in the training data. The latter was done to reduce the
overall size of the model.

5.4 Neural Networks

For the neural networks, we picked the Keras [8] a neural network framework that has recently
been promoted to a Tensorflow frontend. We had no need to write special graph operations,
so we deemed the high level interface to be enough. While RNNs can theoretically take
inputs of any length, they cannot process batches of sentences with variable length4. This is
purely an implementation issue. Due to the way the recurrent cells are initialized in memory,
the recurrent layers are usually unrolled to a certain fixed length for batch learning. Thus
the three possible approaches are:

1. Set the batch size to one, training one sentence at a time. The network is then recon-
figured for the next one.

2. Group sentences with the same lengths together and train batches of those sentences.

3. Pad (or cut) all sentences to the same size and train batches of those. The padded
values can either be masked or are more often simply set to 0.

Setting the batch size to one makes training extremely slow, so 2 and 3 are more common.
The second approach is more memory efficient as one long sequence can force all the data
to be padded to its size, leading to large matrices filled with zeroes. In the Tensorflow,
developers typically unroll the RNN cells to several sizes, one for each length bucket (hence
the name bucketing). This leads to several neural networks with shared parameters that get
updated after every mini batch. This allows the model to output more accurate variable
length sentences. For our task, we used padding for two reasons. Firstly, we wanted to
experiment with any batch size, which would be disallowed by approach 2. Secondly, the
sentences were close enough to each other (with one outlier) that padding would give a
reasonable length. For our task, we padded the sentence to 60 words.

4Tensorflow currently allows dynamic unrolling, but the feature was not available during the implemen-
tation of this work.

5.4. NEURAL NETWORKS 23

For the untrained word embeddings, we ran through the training dataset to create a
mapping of words to an index. We also had separate embedding for out-of-vocabulary
words, numbers, punctuation and padding. For the pretrained embeddings, we used the
given mapping for both training and testing set with the same additional embeddings.

For our experiments with RNNs, we started with a bidirectional LSTM as a base. A
bidirectional LSTM has 2 layers, each reading the text from an opposite direction. The
result is then concatenated and fed into the classification layer. The main motivation was
that words are influenced by both previous and future context. The layer and batch size
were picked empirically to fit into the video RAM of our training GPU. We set the LSTM
layer size to 256, batch size to 512 and trained the network for 25 epochs. We chose Adam
as the optimizer.

24 CHAPTER 5. IMPLEMENTATION

Chapter 6

Experiments

We did several experiments by incrementally adding features. We opted for this approach
to better see the impact of each feature category. We could not perform permutation tests
to measure the statistical significance due the time it takes to train the models.

For CoNLL2003, we used the predefined tags given in the dataset: Person, Location,
Organization and Misc with the BIO scheme. We then evaluated the precision, recall and
F1 score.

To be inline with the papers on CNEC2.0 [39, 38] , we evaluated the precision, recall and
F1 score based on three definitions of correctly detected NEs.

• Both the span of the NE instance was detected correctly and a correct NE type tag
was assigned. (Type)

• The span of the NE instance was detected correctly and a correct supertype tag (i.e.,
the first character of the NE type tag) was assigned. (Supertype)

• The span of the NE instance was detected correctly. (Span)

We trained all CNEC2.0 models using the modified BILOU scheme in [38], on all 46 tags.
We also trained separate models for supertypes and only the span, but opted to use the same
metric as in literature [38].

6.1 CRF

6.1.1 Baseline Approach

For our baseline approach, we used the word itself along with its neighbours in a window
of size 1 and 2 as a feature function. This amounted to 19,711 feature functions after
feature selection. The performance was heavily skewed toward precision, as it basically
tried to match the words. We believe the performance of a label-only CRF system could
be improved by omitting feature selection, which would allow us to keep all words in the
training set. However, this would lead to the number of features being more than ten times
larger. The total number of features would be over 300k. We also note the performance did

25

26 CHAPTER 6. EXPERIMENTS

Table 6.1: CRF with the current and neighbouring word tokens
Precision Recall F1 score

Type 79.74 22.88 35.56
Subtype 82.04 23.55 36.59
Span 85.63 24.99 38.68

not jump between the subtasks. Detecting the span (just the beginning and content of the
named entity) is only marginally better than detecting the type (classify all 46 classes, along
with the correct span).

6.1.2 Morphological features

Afterwards, we morphological features, such as is_capitalized, contains_at and contains_digit
suffixes and prefixes of length two and three, the word shape described in 4.2.5. This almost
doubled the performance. We can see the increase mainly in recall.

Table 6.2: CRF with the current and neighbouring word tokens and morphological features
Precision Recall F1 score

Type 69.68 51.72 59.37
Subtype 75.46 56.03 64.31
Span 83.18 62.78 71.56

6.1.3 POS tags

Adding POS tags yielded comparably small improvements compared to the morphological
features.

Table 6.3: CRF with the current and neighbouring word tokens and morphological features
and POS tags

Precision Recall F1 score
Type 70.78 53.75 61.10
Subtype 77.04 58.52 66.51
Span 85.82 66.28 74.79

6.1.4 Brown clusters, gazetteers

Finally, we added Brown clustering at different granularities (4, 8, 12 and 20) to better deal
with out of vocabulary words and gazetteers to add external information. This lead to our
currently best result. We also tried the same configuration without features, which lead to
a model with 500k features instead of 40k, for a minimal (less than 1.0 F1 score among all
categories) performance increase. However, the actual model sizes were 2.57MB and 33.5MB,
which is negligible.

6.2. RNN 27

Table 6.4: CRF with the current and neighbouring word token, morphological features, POS
tags, Brown clusters and gazetteers

Precision Recall F1 score
Type 76.33 58.36 66.15
Subtype 82.36 62.99 71.38
Span 88.20 68.58 77.16

6.2 RNN

6.2.1 Baseline Approach

For our baseline with recurrent neural networks, we decided on a single bidirectional LSTM
layer with untrained embeddings. We chose 300 as the embedding dimension to be compara-
ble with our pretrained skipgram embeddings. The performance was poor, but better than
our CRF baseline.

Table 6.5: 1 bidirectional layer and untrained embeddings
Precision Recall F1 score

Type 45.75 28.75 35.31
Subtype 53.62 33.72 41.40
Span 70.80 45.25 55.21

6.2.2 Two bidirectional LSTM layers

Afterwards, we doubled the number of parameters by adding a second bidirectional LSTM
layer. The main motivation for that was to see whether the neural network could learn a
more complex data representation. Deeper LSTM networks were also said to have better
performance in machine translation tasks [42]. However, for our task, this proved to be too
many parameters for the network to learn anything in 25 epochs leading to worse performance
in all tasks.

Table 6.6: 2 bidirectional LSTM layers and untrained embeddings
Precision Recall F1 score

Type 38.64 27.43 32.09
Subtype 46.43 32.97 38.56
Span 65.79 47.50 55.16

6.2.3 GRU + batch normalization

After seeing the performance decrease, we decided to try more advanced RNN cell imple-
mentations instead of increasing the model size. We thus employed GRU cells that contain a
lower number of parameters to learn. Additionally, we employed batch normalization. The

28 CHAPTER 6. EXPERIMENTS

performance rose considerably, especially with the types, which was the most difficult task.
Seeing the performance increase, we decided to employ GRU cells with batch normalization
in all subsequent experiments.

Table 6.7: 1 bidirectional GRU layer, batch normalization and untrained embeddings
Precision Recall F1 score

Type 52.14 33.19 40.56
Subtype 58.25 37.10 45.33
Span 71.88 45.36 56.60

6.2.4 Pretrained word embeddings

After using the provided pretrained word2vec embeddings, the performance rose again lead-
ing us to believe that the pretrained word embeddings do contain relevant semantic and
syntactic information which is useful for classification. The small dataset did not allow us
to learn a sufficiently powerful representation. By adding the pretrained model (a form of
transfer learning), we improved the F1 score by over almost 10 points on types.

Table 6.8: 1 bidirectional GRU layer, batch normalization and pretrained embeddings
Precision Recall F1 score

Type 58.32 43.44 49.79
Supertype 63.17 47.06 53.94
Span 70.74 53.58 60.98

6.2.5 Adding POS tags

We added the POS tag of each token by concatenating a one-hot encoded vector. The
idea was twofold. Firstly, we wanted to add more sentence-specific information instead of
the averaged information contained in the embeddings. Secondly, we wanted to add more
information to out-of-vocabulary words. The performance gain was similar to the one we
saw when we added POS tags to our CRF model.

Table 6.9: 1 bidirectional GRU layer, batch normalization and pretrained embeddings, along
with concatenated POS tags

Precision Recall F1 score
Type 59.58 46.59 52.29
Supertype 64.92 50.79 56.99
Span 72.06 57.31 63.84

6.2.6 Concatenating additional features

We tried adding gazetteers (last name, first name, street name) and further boolean features
as a single one-hot vector. This lead to our best result. We appended the features to the

6.2. RNN 29

embedding before the recurrent layer. We also tried to append it after the recurrent layer,
before the classification layer, but this lead to worse results.

Table 6.10: 1 bidirectional GRU layer, batch normalization and pretrained embeddings,
along with concatenated POS tags and boolean features

Precision Recall F1 score
Type 62.38 48.25 54.42
Subtype 66.94 52.51 59.21
Span 74.75 58.79 65.82

6.2.7 Word convolution

Another experiment was to employ 1D convolution on words to force short-term relations
using a 1D convolution on the word embeddings before the RNN. The main benefit of a
convolutional layer is that it is spatially invariant. The idea was that that the filters would
learn word tuples (regardless of their position in the sentence) and their relevance. However,
the performance decreased. We believe it was due to our choice of concatenating the results
of the convolution, increasing the dimension if the RNN input dramatically. We note the
improved precision at the cost of recall.

Table 6.11: 1 bidirectional GRU layer, batch normalization and pretrained embeddings,
concatenated POS tags and boolean features, word convolution

Precision Recall F1 score
Type 65.50 39.69 49.43
Subtype 70.84 42.94 53.47
Span 77.84 47.96 59.35

6.2.8 Character level features

Finally, we tried to add character level information using embeddings. We extracted the char-
acters of each word and embedded each them into a 32-dimensional vector. The resulting ma-
trix was four-dimensional (batch×words_in_sentence×chars_in_word×char_embedding).
We then tried two approaches. We performed character convolution and we tried encoding
the characters themselves into quasi-word embeddings using a RNN architecture. Neither
of those showed significant performance increase, but we attribute that mainly to hyperpa-
rameter and architectural decisions. Appending additional features also led to an increase
of trained parameters which might have been too much for our small task. We believe the
results would be better if we could pretrain the character embeddings on a different task
beforehand.

6.2.8.1 Character convolution

Our decision to try out character convolution was mainly inspired by language modelling
research [49, 19, 4], which showed improved performance while using a lower number of

30 CHAPTER 6. EXPERIMENTS

trainable parameters. We used a convolutional layer and concatenated the resulting vector
to the embedding. We had to use 2D convolution due to the added dimension and reshape
and permute the character input appropriately. We believe

Table 6.12: 1 bidirectional GRU layer, batch normalization and pretrained embeddings,
concatenated POS tags and boolean features, character convolution

Precision Recall F1 score
Type 56.90 44.69 49.74
Subtype 53.02 48.94 55.10
Span 70.98 56.06 62.64

6.2.8.2 Character-level word encoding

Another approach was to encode each character embedding into a quasi-word embedding
using a small RNN network and append that to our pretrained embeddings as an additional
feature. The main issue was mainly the encoding the character embeddings into words. We
padded each quasi-word to a length of 15, which was probably too much and resulted in
many quasi-words being padded with zeros. Additionally, the dataset was too small and we
believe the 25 epochs were not enough. We believe the next step would be to remove the
word embeddings and train on character embeddings exclusively.

Table 6.13: 1 bidirectional GRU layer, batch normalization and pretrained embeddings,
concatenated POS tags and boolean features, character encodings

Precision Recall F1 score
Type 59.86 40.44 48.27
Subtype 66.21 44.74 53.40
Span 74.78 51.37 60.90

6.3 CoNLL2003

We did two smaller experiments on the CoNLL2003 dataset. We used a less extensive feature
set (no external information or lemmatization, which was language specific) than the one used
for CNEC2.0, but got reasonable results regardless. For CRFs, we used all morphological
features (suffixes, prefixes, capitalization, word shape) along with the given POS tags and
word chunk tags. This improved over the baseline considerably but did not reach the current
state-of-art at 88.76 F1 score. We would require character level features [21] and English
language gazetteers to match. We note the best result using a CRF was 84.04 F1 score [25].
We believe the implementation of ensemble classifiers [10] to be out of scope of this work as
it is a meta learning approach instead of a concrete sequence modelling technique.

For RNN, we used the same model as our baseline (1 bidirectional GRU layer, untrained
embeddings with dimension 300, one-hot encoded POS tags). The results for RNNs were
very poor and we did not experiment with different neural network architectures due to time

6.4. RESULTS COMPARISON 31

constraints. We believe the poor performance was caused by a combination of embedding
size and the dimension of the recurrent layer.

Table 6.14: CoNLL2003 task comparison
Precision Recall F1 score

baseline 71.91 50.90 59.61
CRF 79.20 76.88 78.02
RNN 52.52 58.06 54.20
State of art 88.99 88.54 88.76

6.4 Results comparison

Finally, we show a table comparing our experiments on the CNEC2.0 dataset with the current
state-of-art. We omitted the convolutional experiments as their performance was not a big

Table 6.15: Comparison of F1 scores on types of all our models.
model F1 score on types
RNN baseline 35.31
RNN, GRU + bnorm 40.56
CRF, words 48.27
RNN, pretrained 49.79
RNN, POS, fts 54.42
CRF, morphological features 59.37
CRF, POS tags 61.10
Decision trees [36] 62.00
CRF, all fts 66.15
State of art [39] 79.23

improvement.

32 CHAPTER 6. EXPERIMENTS

Chapter 7

Conclusion

To summarize this work, we researched the current methods for sequence classification in
general and in named entity recognition and then decided to look at two concrete examples in
detail. We discussed the sequential nature of text data and how to model it. We framed the
linear-chain CRF as an optimization task, where we perform maximum likelihood estimation
of the parameters. We then described the used feature functions, which we handpicked based
on intuition and literature. For neural networks, we started with the general description of
feed forward networks along with our research on common challenges and their solutions. We
did it as we encountered these issues frequently while training own neural networks. After-
wards, we went to describe a modification of the feed forward architecture, called recurrent
neural networks, to learn long-term relations.

Then we implemented a NER system that extracts features from both the CNEC2.0 and
ConLL2003 dataset, and performed several experiments for both classifiers. With conditional
random fields, we were mainly interested in how the features directly impact classification
performance. We started with local features, such as the word or neighbouring words. Af-
terwards, we added morphological features which described the words better. We noted a
significant increase of performance there, which led us to believe that the rich morpholog-
ical structure of the Czech language needs to be considered when doing text classification.
Finally, we added POS tags to model word relations in the sentence and gazetteers together
with brown clustering to add external information. We were briefly interested the number
of generated features as well, as word distributions follow the Zipf’s law [31], we could re-
move a large number of them without significantly affecting performance. From our CRF
experiments, we gained the insight about the relevance of feature quality.

In recurrent neural networks, we mainly experimented with different training methods
and ways to represent the data. We compared the baseline LSTM model with more ad-
vanced GRU and batch normalization and noted the considerable performance improvement
along with faster training. Afterwards we employed pretrained word embeddings as a form
of transfer learning. Then we tried external features such as POS tags. Finally, we tried
more novel approaches using word convolution and character-level features. We were mainly
inspired by the performance gain seen in the CRF module. However, we were unable to
outperform our previous models or reach the state of art, probably because of a combina-
tion of hyperparameters and structural decisions. We mainly believe the word embedding
dimension of 300 was too large.

33

34 CHAPTER 7. CONCLUSION

Most of the experiments concentrated on the CNEC2.0 dataset as CoNLL2003 has been
extensively tested using a diverse range of methods, but we outperformed the baseline using
a basic feature set.

For further work, we intend to experiment further with a convolutional approach. We
also want to improve the character level features as we did not have enough time to tune the
architecture.

Bibliography

[1] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. CoRR, abs/1409.0473, 2014.

[2] B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neural network architectures
using reinforcement learning. CoRR, abs/1611.02167, 2016.

[3] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient
descent is difficult. Trans. Neur. Netw., 5(2):157–166, Mar. 1994.

[4] J. Bradbury, S. Merity, C. Xiong, and R. Socher. Quasi-recurrent neural networks.
CoRR, abs/1611.01576, 2016.

[5] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and J. C. Lai. Class-based
n-gram models of natural language. Comput. Linguist., 18(4):467–479, Dec. 1992.

[6] X. Carreras, L. Màrquez, and L. Padró. A simple named entity extractor using adaboost.
In W. Daelemans and M. Osborne, editors, Proceedings of CoNLL-2003, pages 152–155.
Edmonton, Canada, 2003.

[7] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Ben-
gio. Learning phrase representations using RNN encoder-decoder for statistical machine
translation. CoRR, abs/1406.1078, 2014.

[8] F. Chollet. keras. https://github.com/fchollet/keras, 2015.

[9] D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning
by exponential linear units (elus). CoRR, abs/1511.07289, 2015.

[10] R. Florian, A. Ittycheriah, H. Jing, and T. Zhang. Named entity recognition through
classifier combination. In W. Daelemans and M. Osborne, editors, Proceedings of
CoNLL-2003, pages 168–171. Edmonton, Canada, 2003.

[11] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[12] J. Hammerton. Named entity recognition with long short-term memory. In W. Daele-
mans and M. Osborne, editors, Proceedings of CoNLL-2003, pages 172–175. Edmonton,
Canada, 2003.

35

https://github.com/fchollet/keras
http://www.deeplearningbook.org
http://www.deeplearningbook.org

36 BIBLIOGRAPHY

[13] S. Hochreiter. The vanishing gradient problem during learning recurrent neural nets
and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 6(02):107–116, 1998.

[14] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, Nov. 1997.

[15] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2):251 – 257, 1991.

[16] D. H. Hubel and T. N. Wiesel. Receptive fields and functional architecture of monkey
striate cortex. Journal of Physiology (London), 195:215–243, 1968.

[17] A. G. O. II, T. Mikolov, and D. Reitter. Learning simpler language models with the
delta recurrent neural network framework. CoRR, abs/1703.08864, 2017.

[18] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

[19] N. Kalchbrenner, L. Espeholt, K. Simonyan, A. van den Oord, A. Graves, and
K. Kavukcuoglu. Neural machine translation in linear time. CoRR, abs/1610.10099,
2016.

[20] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

[21] D. Klein, J. Smarr, H. Nguyen, and C. D. Manning. Named entity recognition with
character-level models. In W. Daelemans and M. Osborne, editors, Proceedings of
CoNLL-2003, pages 180–183. Edmonton, Canada, 2003.

[22] M. Konkol and M. Konopík. Maximum Entropy Named Entity Recognition for Czech
Language, pages 203–210. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[23] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In Proceedings of the Eigh-
teenth International Conference on Machine Learning, ICML ’01, pages 282–289, San
Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[24] P. Liang. Implementation of the brown hierarchical word clustering algorithm. https:
//github.com/percyliang/brown-cluster, 2012.

[25] A. McCallum and W. Li. Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons. In W. Daelemans and
M. Osborne, editors, Proceedings of CoNLL-2003, pages 188–191. Edmonton, Canada,
2003.

[26] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781, 2013.

[27] J. Mount. The equivalence of logistic regression and maximum entropy models, 2011.

https://github.com/percyliang/brown-cluster
https://github.com/percyliang/brown-cluster

BIBLIOGRAPHY 37

[28] R. H. Nielsen. Theory of the backpropagation neural network. In Proceedings of the
International Joint Conference on Neural Networks (Washington, DC), volume I, pages
593–605. Piscataway, NJ: IEEE, 1989.

[29] N. Okazaki. Crfsuite: a fast implementation of conditional random fields (crfs), 2007.

[30] R. Pascanu, T. Mikolov, and Y. Bengio. Understanding the exploding gradient problem.
CoRR, abs/1211.5063, 2012.

[31] D. M. W. Powers. Applications and explanations of zipf’s law. In Proceedings of the
Joint Conferences on New Methods in Language Processing and Computational Natu-
ral Language Learning, NeMLaP3/CoNLL ’98, pages 151–160, Stroudsburg, PA, USA,
1998. Association for Computational Linguistics.

[32] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, Feb 1989.

[33] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Neurocomputing: Foundations of
research. chapter Learning Representations by Back-propagating Errors, pages 696–699.
MIT Press, Cambridge, MA, USA, 1988.

[34] M. Sahlgren. The distributional hypothesis.

[35] M. Ševčíková, Z. Žabokrtský, and O. Krůza. Named Entities in Czech: Annotating
Data and Developing NE Tagger, pages 188–195. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007.

[36] M. Sevcíková, Z. Zabokrtský, and O. Kruza. Named entities in czech: Annotating data
and developing NE tagger. In V. Matousek and P. Mautner, editors, Text, Speech and
Dialogue, 10th International Conference, TSD 2007, Pilsen, Czech Republic, September
3-7, 2007, Proceedings, volume 4629 of Lecture Notes in Computer Science, pages 188–
195. Springer, 2007.

[37] M. Straka and J. Straková. Czech models (MorfFlex CZ 161115 + PDT 3.0) for Mor-
phoDiTa 161115, 2016. LINDAT/CLARIN digital library at the Institute of Formal and
Applied Linguistics, Charles University.

[38] J. Straková, M. Straka, and J. Hajič. A New State-of-The-Art Czech Named Entity
Recognizer, pages 68–75. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[39] J. Straková, M. Straka, and J. Hajič. Neural networks for featureless named entity recog-
nition in czech. In P. Sojka, A. Horák, I. Kopeček, and K. Pala, editors, Text, Speech,
and Dialogue: 19th International Conference, TSD 2016, number 9924 in Lecture Notes
in Computer Science, pages 173–181, Cham / Heidelberg / New York / Dordrecht /
London, 2016. Masaryk University, Springer International Publishing.

[40] J. Straková, M. Straka, and J. Hajič. Open-Source Tools for Morphology, Lemmatiza-
tion, POS Tagging and Named Entity Recognition. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics: System Demonstrations, pages
13–18, Baltimore, Maryland, June 2014. Association for Computational Linguistics.

38 BIBLIOGRAPHY

[41] M. Sundermeyer, R. Schlüter, and H. Ney. Lstm neural networks for language modeling.
In Interspeech, pages 194–197, 2012.

[42] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. CoRR, abs/1409.3215, 2014.

[43] C. Sutton and A. McCallum. An introduction to conditional random fields. Found.
Trends Mach. Learn., 4(4):267–373, Apr. 2012.

[44] M. Tkachenko and A. Simanovsky. Named entity recognition: Exploring features. In
J. Jancsary, editor, Proceedings of KONVENS 2012, pages 118–127. ÖGAI, September
2012. Main track: oral presentations.

[45] C. Wang, H. Yang, C. Bartz, and C. Meinel. Image captioning with deep bidirectional
lstms. CoRR, abs/1604.00790, 2016.

[46] D. Wang and E. Nyberg. A long short-term memory model for answer sentence selection
in question answering. In ACL, 2015.

[47] D. Wu, G. Ngai, and M. Carpuat. A stacked, voted, stacked model for named entity
recognition. In W. Daelemans and M. Osborne, editors, Proceedings of CoNLL-2003,
pages 200–203. Edmonton, Canada, 2003.

[48] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le, P. Nguyen, A. Senior,
V. Vanhoucke, J. Dean, and G. E. Hinton. On rectified linear units for speech processing.
In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 3517–3521, May 2013.

[49] X. Zhang, J. J. Zhao, and Y. LeCun. Character-level convolutional networks for text
classification. CoRR, abs/1509.01626, 2015.

Appendix A

List of abbreviations

BFGS Broyden–Fletcher–Goldfarb–Shanno algorithm

CRF Conditional Random Fields

CNEC Czech Named Entity Corpus

GRU Gated Recurrent Unit

LSTM Long Short Term Memory

MSE Mean Squared Error

NER Named Entity Recognition

POS Part-of-speech

RNN Recurrent Neural Network

SVM Support Vector Machine

39

40 APPENDIX A. LIST OF ABBREVIATIONS

Appendix B

Installation

To install this, please install the following python dependencies using pypy:

pip i n s t a l l numpy
pip i n s t a l l s k l e a rn
pip i n s t a l l s c ipy
pip i n s t a l l u f a l . morphodita
pip i n s t a l l python−c r f s u i t e
pip i n s t a l l t en so r f l ow
pip i n s t a l l ke ras

Then you can run the CRF module by first setting up a model.txt (we provided one as an
example) and running

python3 −m sr c .CRF_NER.CRF_NER −t named_ent_train . txt /
named_ent_etest . txt models . txt BILOU

The last parameter is the granularity, you can also use supertype and BIO. For the RNN
based classifier, run:

python3 −m sr c . keras_NER . keras_NER

Both classifiers will output a file with _textoutput.json as a suffix. You can measure the
performance by calling:

p e r l retokenize_and_eval . p l named_ent_etest . t r e ex YourModel_textoutput . j son

41

42 APPENDIX B. INSTALLATION

Appendix C

Contents of CD

|-- adresy.txt
|-- czech_last_names
|-- czech_names
|-- czech_stemmer.py
|-- eval
| |-- compare_ne_outputs.gold
| |-- compare_ne_outputs.system
| |-- compare_ne_outputs_v3.pl
| |-- named_ent_etest.treex
| |-- retokenize_and_eval.pl
|-- features.txt
|-- LICENSE
|-- models.txt
|-- named_ent_dtest.txt
|-- named_ent_etest.txt
|-- named_ent_train.txt
|-- named_ent.txt
|-- thesis.pdf
|-- paths
|-- POS_final.json
|-- README.md
|-- src
| |-- common
| | |-- eval.py
| | |-- feature_extractor.py
| | |-- __init__.py
| | |-- NER_utils.py
| |-- CRF_NER
| | |-- CRF_NER.py
| | |-- __init__.py
| |-- __init__.py
| |-- keras_NER
| | |-- keras_NER.py
|-- tag_indices_bilou.json
|-- token_indices.json

43

	Introduction
	Related work
	Problem specification
	Description of the task
	Evaluation metrics
	Datasets
	CoNLL-2003
	CNEC 2.0

	Algorithms
	Introduction
	Linear-chain Conditional Random Fields
	Definition
	Discriminative versus generative learning
	Training
	Inference
	Feature functions
	Feature Selection

	Neural Networks
	Definition
	Activation functions
	Training
	Backpropagation
	Optimizers

	Challenges
	Hyperparameters
	Vanishing and Exploding Gradients
	Local minima
	Overfitting

	Modelling power
	Features
	Word2Vec

	Recurrent Neural Networks
	LSTM

	Implementation
	External Annotators
	Feature Extractor
	CRF
	Neural Networks

	Experiments
	CRF
	Baseline Approach
	Morphological features
	POS tags
	Brown clusters, gazetteers

	RNN
	Baseline Approach
	Two bidirectional LSTM layers
	GRU + batch normalization
	Pretrained word embeddings
	Adding POS tags
	Concatenating additional features
	Word convolution
	Character level features
	Character convolution
	Character-level word encoding

	CoNLL2003
	Results comparison

	Conclusion
	Bibliography
	List of abbreviations
	Installation
	Contents of CD

